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Summary 

The Jack -Knife variance estimator v2(r) 
(say) based on splitting the sample at random 
into g groups is applied to estimation of the 
variance of the ratio estimator r =ÿ /x of the 
population ratio R /X. Assuming a linear 
regression of y on x where x has a gamma distri- 
bution it is shown that the exact bias of v2(r) 
is a decreasing function of g. The exact bias 
of v2(r) with g = n is less than that of vl(r), 
the customary variance estimator of r, for 
moderate sample sizes. The exact stability of 
v2(r) for the special case of g = 2 is shown to 

be less than that of vl(r). The asymptotic 
stability of vl(r) is also discussed for a bi- 
variate normal distribution. 

1. Introduction 

Ratio estimators are often employed in 
sample surveys for estimating the population 
mean of a characteristic of interest 'y' or 
the population ratio R = /X utilizing an auxil- 
iary variate 'x' that is positively correlated 
with 'y'. The estimate of the variance associ- 
ated with an estimator is often used in draw- 
ing statistical inferences (e.g. confidence 
limits on the estimand). It is, therefore, 
desirable that a variance estimator should be 
as stable as possible. In this paper we in- 
vestigate the bias and stability of the Jack - 
Knife variance estimator and the customary 
variance estimator in ratio estimation. 

We shall confine ourselves to simple 
random sampling and assume that the population 
size N is infinite to simplify the discussion. 
From a simple random sample of n pairs (y.,x.) 
we have the customary ratio estimator of 

1 

R as 

r = ÿ/x (1) 

where and are the sample means of y and x 

respectively. As an estimator of V(r), the 
variance of r, it is customary to take 

vl(r) = - 2rsyx + /(2) 

where s2 and s2 are sample mean squares and syx 

is the sample covariance. It is known that the 
bias of v1(r) is of order 1 /n. 

Let the sample of size n be divided at randon 
into g groups, each of size p so that n =pg. Let 

-1 g 
rQ = g 1 rQj 

where 
rQj = gr - (g-1)ri (4) 

and r! is the customary ratio estimator calcu- 
lated3from the sample after omitting the jth 
group. 

(2) 

(3) 

Tukey (1958) has pointed out that the 
estimators like (called pseduo - values) may, 
to a good approxiOation, be treated as though 
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they are g independent estimators. Therefore, 
we can use the simple estimator 

v2(r) = g- 
1(g -1 

- rQ)2 

as an estimator of V(r) 

has called this general 
in the context of ratio 
Knife'. 

(S) 

since 
1 

rQj /g. Tukey 

procedure, described here 
estimation, the 'Jack- 

The stability of a variance estimator may 
be judged by its coefficient of variation. 
Kokan (1963) has investigated the large -sample 
stabilities of vl(r) and the unbiased variance 
estimator: 

/X) = s2 /(n2) (6) 

where is the ratio estimator of R not using 
the sample x- information. He has shown that the 

coefficient of variation of v1(r) is always 
larger than that of v(ÿ /X) for a bivariate normal 
distribution and this property also holds for a 
bivariate log normal distribution for certain 
ranges of the parameters. Lauh and Williams 
(1963) have made a Monte Carlo study of the 
stabilities of vl(r) and v,(r) with g =n for 
small samples. Assuming tfiat the regression of 
y on x is through the origin and Cx is small, they 
have shown that the Monte Carlo variances of 
vl(r) and v2(r) are about the same when x has a 
normal distribution whereas the variance of 
v2(r) is considerably smaller than that of vl(r) 
when x has an exponential distribution. 

Recently Rao and Beegle (1966) investigat- 
ed the small sample properties of v(ÿ /X), vl(r) 
and v2(r) by a Monte Carlo study. They have 
shown that under the Lauh and Williams' model with 
x normal, the coefficient of variation of 
v2(r) decreases as g increases. The coefficients 
of variation of v2(r) with g =n and v1(r) are 
essentially equal. Further vl(r) and v2(r) with 
g =n are quite stable compared to v(ÿ /X). They 
have also considered the general regression model 
where the regression of y on x does not pass 
through the origin, and Cx is large. Under this 
non -ideal condition also the coefficient of vari- 

ation of v2(r) decreases with g so that g =n is 
the optimum choice. The coefficients of variat- 
ion of v2(r) (with g =n) and vl(r) are again 

essentially equal, but both are considerably 
larger than the coefficient of variation of 
v(ÿ /X). Rao and Beegle conclude that caution is 

needed in the indiscriminate use of ratio 
extimators. 

2. Stabilities of Variance Estimators v(ÿ /X) 
and vl(r): Asymptotic Theory Assuming a Bivariate 

Normal Distribution. 

Kokan (1963) used the formula for the relat- 
ive variance of vl(r) given by Hansen et al (1953 

page 177) to compare the stability of v1(1- with 



that of v(ÿ /X). This formula was derived by 
substituting R for r in v1(r) as a large sample 
approximation. We will show that this approach 
is not correct. The correct_approach is to ex- 

pand r in terms of = (x -X) / and 

= (y -) /X and find the variance of vl(r) 
for large samples. Using this approach and 
utilizing the theory of cumulants and k- statist- 
ics (Kendall and Stuart, 1958) to find the 
variance and covariances of sample moments it can 
be shown that the relative variance (CV2) of 
vl(r) is 

2 2 4 [Cx - 
[vi(r)] 

n n 

[C2 
- + C2] 

n 4[Bi 

(7) 

to terms of order n 
-1 

, where C , Cx are co- 
efficients of variation (CV) y and x re- 
spectively and P is the coefficient of correlat- 
ion between y and x. The relative variance of 

/X) is 

CV2[v(y /X)] = (8) 

to terms of order n 
-1 

. 

From (7) and (8) we have 

CV[v(ÿ /R)] < CV[vl(r)]. (9) 

The equality sign in (9) holds only when the 
regression of y on x is a straight line through 
the origin. Thus in large samples, with simple 
random sampling from a bivariate normal populat- 
ion, the coefficients of variation of the 
variance estimators v(ÿ /X) and vl(r) are equal 
only if the regression of y on xlis a straight 
line through the origin; otherwise CV of V(ÿ /R) 

is always less than that of vl(r). 

It is interesting to note that the Monte 

Carlo results for small samples obtained by 
Rao and Beegle (1966) agree with the asymptotic 
results obtained here, namely, v(ÿ /X) and vl(r) 
are equally stable if the regression of y on x 
is through the origin; otherwise v1(r) is always 
less stable. Further, since IBias (r)I 

<C 
we have to terms of order 1 /n. 

4C2 
x 

n 

vl(r) compared to v(ÿ /X) is given by 

E1= 
2 
[v(y/X)]/CV 

2 
[v (r)] 

= [1 +2C2K2(K- P)2 /(1- 2PK +K2)] -1 

= 1 if K =p (regression through the origin) 

< otherwise (12) 

where K = Cx The relative stability clearly 
depends on p, and K = Cx /Cy.- The stability 
of v1(r) relative to that of v(y /) is of in- 

terest only when the estimator r is more effi- 

cient than ÿ/X (i.e. when p >K /2). Consequently, 
the numerical values of E1 for selected values 
of P( >K /2) K and Cy are presented in Table 1. 

It will be seen from Table 1 that for fixed 

Cy, E1 decreases as IP -KI (i.e. departure 

from regression through the origin) increases. 
The stability of v1(r) is low when Cx = KCy 
is large. 

3. Stability of Variance Estimators v(ÿ /X)and 
vi(r) : Exact Theory assuming x has a gamma 

distribution. 

In this section we assume that yi= a 
+ui, 

where ui's are independent normals with mean zero 

and variance n6(6 is of order n-1) and the 
variates xi /n have the gamma distribution with 

parameter h so that = Exi /n has the gamma 
distribution with parameter m = nh. Under this 
model we derive the formulae for the variance 
estimators and investigate their stabilities. 
All our results are exact for any sample size, 
n. 

The variance of ÿ/X under the model is given 
by 2 

/X) = + (13) 

and v(ÿ /X) is an unbiased estimator of V(ÿ /X). 
The variance of r is 

2 

V(r) - + 
6 

(14) 

(m-1) (m-2) (m-1)(m-2) 

The bias of v1(r) as an estimator of V(r) can 
be shown to be 

(10) 
Bias [vl(r)] = 2(5m2- 5m +2)a2 

m (m -1) (m -1) (m -2) 

Kokan had obtained the expression on r.h.s. of 
(10) for CV2[v1(r)] using the general formula 
given by Hansen at el (1953), which clearly 
over estimates tig coefficient of variation 
of v1(r) so far as the large sample approximat- 
ion to terms of order n-1 is concerned. As a 
result, he had found CV of vl(r) to be consider- 
ably higher than that of v(ÿ /X) even when the 
regression is through the origin. 

The relative stability of two variance 
estimators may be judged by the ratio of their 
relative variances. The relative stability of 
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2(m2 + 2m-2)6 

m2 (m2-1) (m-2) 

= c3a2 + c46 (say). (15.) 

We note that for finding the variances of v(ÿ /X) 
and vl(r), expected values of some functions of 
sample moments are needed. The method of 
evaluating these expectations is same as that 
of Rao and Webster (1966). The details of 



Table 1. Asymptotic relative stability of vi(r) for selected values of K, Cy and p(>k /2). 

K C p = .3 p = .5 = .7 .9 

.5 

1.0 

1.5 

1.0 

2.0 

3.0 

0.5 

1.0 

2.0 

0.5 

1.0 

2.0 

98 

92 

84 

100 

100 

100 

89 

67 

33 

96 

87 

75 

93 

77 

45 

81 

52 

33 

98 

91 

71 

58 

25 

8 

evaluating these expectations, which involve 
some tedious algebra, are omitted and only the 
final results are given. The variance of 
v(ÿ /X) is given by 

- 2S2 4ß2d 
m4(n-1) m3(n-1) 

4 

+ +1)(m +2)(m +3) -m]. 
m 

The variance of vi(r) can be shown to be 

V[v (r)]- 
62 

e+(n+1)(m+3) 
(m+2)2 

;443 8+(n-1)(m+1) (m+1)2 

where 

+ e+ (2m-n+3) 
m4 (n-1) (m+1)2 

4 

+ [e 1 
2 

m (m+1) 
2 

- [(n +1)(m +6) -12] 
(n -1) (m +3) (m +2) (m +1) 

From (15) and (17) the MSE of vl(r) can be 
obtained as 

(16) 

(17) 

(18) 

MSE[vl(r)] = c5 62 +c6a4 + c7a26 (say) (19) 

where the coefficients c5, c6 and c7 are funct- 
ions of m and n. 

Further, we note that in terms of the 

model 
a = ?[(K-p)/K] 

= /(Km)] 

6 = ?2[(1- P2) /(K2m)] (20) 

where K = Cx /C>,. Now, using (13) through (18) 

and (20) the relative variances (i.e. CV2) of 
the variance estimators v(ÿ /X) and vi(r) can 
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be obtained as functions of K,p, m and n. 
At present, we are evaluating CV2 of the 
variance estimators to compare their exact 
stabilities for different values of K, p, m and 
n. 

4. Bias of the Jack -Knife Variance Estimator. 

In this section we investigate the bias of 

v2(r) and compare with that of vi(r) under the 
model of section 3. The Jack -Knife variance 

estimator v2(r) can be written as 

v2(r) = g- 
1(g -1 

- rQ)2 
1 

_(g-1) [a2 1 E 
2 

g 1 x! 
J J 

+ E {-1E 
1 g 1 

g g 1 g 
+ 2a E E }] (21) 

x g 1 x g 1 

where and are the sample means obtained 

after omitting the j th group. Now, since 

[(g- 1)zß] /g has the gamma distribution with 

parameter (n- p)h= [m(g- 1)] /g, we have 

(g-1) 
2 

E[ 
[m(g-1)-g[m(g-1)-2g] 

J 

For ;!'s we have the following expected 
values: 

E 2) = 

and 

E[u' u!] 3. 

(g-1) 



Using these expected values it can be shown that 
the expected value of v2(r) for g > 3 (the 

special case of g = 2 is discussed in the next 
section) is 

4 

E[v2(r)] = a2 m(g-1)-2g] 

g i J 
3 (g-1) 

[m(g-1)-g[m(g-1)-2g] 

- (g-2) E( ) } (22) 
X! x 

From Rao and Webster (1966) we have, for integer. 
m, 

2 

]-r(2a+b-2)r-2(a)r-1(b)C(a,b) (23) 

(g-1)2 

C(a,b)= 

where 

a-2 
,k 

r(2a+b_k)2,(b+k) 
k=0 

+(-1)a-1[2aÉb21)k+1 
1 + (-1)a+b k=1 (a+b-k-1) 

2 

if a > 2 (24) 

= 2bEl(-1)k+l 
1 

2 
+ (-1)b+l 

2 

(b-k) 

if a=1, b >2 (25) 

= if a=1, b=1 (26) 

and a=m/g and bç[m(g-2)]/g. 

Now, the bias of v2(r) as an estimator of 
V(r) is 

Bias[v2(r)] =E[v2(r)]- V(r) =c1 a2 +c26 (say). (27) 

Using (22) through (26) the coefficients c and 
c2 can be expressed explicitly as function of 
g and m. However, since the resulting express- 
ion would not be in a closed form, it is 

difficult to investigate analytically the be- 
havior of the bias of v2(r) as a function of g 
for fixed m. Therefore, we have made a numerical 
investigation and the results are presented in 
Table 2. We find from Table 2 that the bias of 
v2(r) decreases monotonically as g increases for 
fixed m so that the bias is minimum when g =n. 

We now compare the bias of v (r) with that 
of the customary variance estimator vi(r) given 
by (15). The absolute values of the coefficients 
c3 and c4 in the formula for Bias [vi(r)] de- 
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crease as m ( >3) increases. These coefficients 
have been calculated to compare with those in 
the formula for the bias of v2(r) and are 
presented in Table 2. The bias of vi(r) should 
be compared with that of v2(r) (with g =n) since 

the bias of v2(r) is minimum when g =n. From Table 

2 we find that the absolute bias of v2(r) with 

g =n is less than that of vi(r) for n>6 whenever 
m >8. - 
5. Stability of the Jack -Knife Variance Estimat- 

or. 

In this section we investigate the stability 

of the Jack -Knife variance estimator v2(r) under 
the model of section 3 and compare it with that 
of vi(r). The variance of v2(r) is defined by 

V[v2(r)] = E[v2(r)]2 - E2[v2(r)]. (28) 

For the case of g =2, the means obtained 
from half -samples are independent and there- 
fore the variance formulas are relatively simple. 
We have 

v2(r) 
1- 1)2+ 1-2)2 

+ (29) 

2 

where i' and are means of first and second 
half -samples nspectively and they are independ- 
ent gamma variates each with parameter m /2. 
Therefore, we have 

E( E( - 1 ; t > 1. 

1 igl(m-2i) 

Consequently 

E[v2(r)] - 

The bias of 

Bias[v2(r)]- 

the expected value of v2(r) is 

a2 
. 

(30) 

(m- 2)2(m -4) (m- 2)(m -4) 

v2(r) as an estimator of V(r) is 

(4m-7)02 36 

(m-1)2(m-2)2(m-4)+ (m-1)(m-2)(m-4) 

(31) 

Thus the bias of v2(r) with g =2 decreases as m 
increases. 

Now from (29) we have 

16E[v2(r)]2= E[a4 
1 1 )4 - )4 

6a2 2 al 1 1 



Table 2. The coefficients c c3 and c4 in Bias [v2(r)] 

= cla2 + c26 and Bias [vl(r)] = + c46 for 

selected values of m and g. 

m g c1x106 1c2Ix106 1c3Ix106 1c4Ix106 

8 2* 3543 17857 

8 4 1961 9082 8 1665 6448 

8 8 1500 6513 

10 2 1061 6944 10 634 2980 

10 10 479 2573 

12 2 423 3409 12 292 1612 

12 4 273 1931 

12 6 233 1571 

12 12 197 1261 

16 2 108 1190 16 88 626 

16 4 74 699 

16 8 58 514 

16 16 52 435 

20 2 39 548 20 35 305 

20 10 21 227 

20 20 19 198 

24 2 17 296 24 16 171 

24 6 11 147 

24 12 9 119 

24 24 9 106 

32 2 5 115 32 5 69 

32 16 3 44 

32 32 2 41 

* 
Note: formula for Bias [v2(r)] for g = 2 is given in section 4. 

On Simplification, this reduces to 1 2 m 
2 
-8m +18 

2 

4 
(m- 2)4(m -4)2 (m- 2)2(m-4)2(m- 6)(m -8) 

E[v2(r)]2 
3a 

(m- 2)2(m- 4)2(m- 6)(m -8) 
4(m2 +m- 18)a26 

+ (33) 

3(m2 -10m +28)5 2 

(m- 2)2(m- 4)2(m- 6)(m -8) 

+ 
6a2 

(32) 

On-2)(m-4) 
2 
(m-6)(m-8) 

We can obtain E2[v2(r)] from (30). Finally the 
variance of v2(r) is obtained as 

V[v2(r)] =a4[ 2 
32 

(m-2) 
2 

(m-6)(m-8) 
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(m- 2)3(m- 4)2(m- 6)(m -8) 

From (31) and (33) we can obtain MSE of v2(r) 
as 

MSE[v2(r)] = C852 + c9a4 + c10a25 (say) (34) 

where the coefficients c8, c9 and c10 are funct- 

ions of m( >8) only. 

We have evaluated the coefficients in (34) 
for selected values of m and those in MSE of 



Table 3. The coefficients c10 in MSE Formulas, MSE[v1(r)] = 

c562 + + MSE[v2(r)] = c862 + + 

for selected values of m and n. 

m n c5x106 c6x1010 c7x1010 c8x106 c9x1010 

10 2 251 16736 510772 10 4184 1571043 

10 10 37 6376 125380 

12 2 116 5420 196618 12 871 181480 

12 4 41 2593 80736 

12 6 26 2028 57560 

12 12 13 1566 38597 

16 2 35 966 44448 16 130 11594 

16 4 12 406 17153 

16 8 5 246 9354 

16 16 3 182 6235 

20 2 14 259 14163 20 37 1795 

20 10 2 49 2326 

20 20 0.8 36 1547 

24 2 7 88 5586 24 14 444 

24 6 13 22 1332 

24 12 0.6 13 752 

24 24 0.3 10 500 

32 2 2 16 1294 32 4 52 

32 16 0.1 2 128 

32 32 0.07 1 85 

v1(r), given by (19), for selected values of m 
and n. They are presented in Table 3. It will 
be seen from Table 3 that the MSE of v2(r) with 
g =2 is considerably larger than that of vl(r). 
We conclude that the Jack -Knife variance 
estimator v2(r) with g =2 is not very stable. 
At the present time the investigation of the 
stability of v2(r) for general g is in progress 
and the results will be reported in a subsequent 
paper. 
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